Journal Search Engine
Search Advanced Search Adode Reader(link)
Download PDF Export Citaion korean bibliography PMC previewer
ISSN : 1598-7248 (Print)
ISSN : 2234-6473 (Online)
Industrial Engineering & Management Systems Vol.7 No.2 pp.171-181

An Improved Particle Swarm Optimization Algorithm for Care Worker Scheduling

Pisal Yenradee, 1Chananes Akjiratikarl, 2Paul R. Drake
Industrial Engineering Program Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani 12121, THAILAND
1Industrial Engineering Program Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani 12121, THAILAND

2e-Business Division The University of Liverpool Management School, Liverpool, L69 7ZH, UK
Selected paper APIEMS2006


Home care, known also as domiciliary care, is part of the community care service that is a responsibility of the local government authorities in the UK as well as many other countries around the world. The aim is to provide the care and support needed to assist people, particularly older people, people with physical or learning disabilities and people who need assistance due to illness to live as independently as possible in their own homes. It is performed primarily by care workers visiting clients’ homes where they provide help with daily activities. This paper is concerned with the dispatching of care workers to clients in an efficient manner. The optimized routine for each care worker determines a schedule to achieve the minimum total cost (in terms of distance traveled) without violating the capacity and time window constraints. A collaborative population-based meta-heuristic called Particle Swarm Optimization (PSO) is applied to solve the problem. A particle is defined as a multidimensional point in space which represents the corresponding schedule for care workers and their clients. Each dimension of a particle represents a care activity and the corresponding, allocated care worker. The continuous position value of each dimension determines the care worker to be assigned and also the assignment priority. A heuristic assignment scheme is specially designed to transform the continuous position value to the discrete job schedule. This job schedule represents the potential feasible solution to the problem. The Earliest Start Time Priority with Minimum Distance Assignment (ESTPMDA) technique is developed for generating an initial solution which guides the search direction of the particle. Local improvement procedures (LIP), insertion and swap, are embedded in the PSO algorithm in order to further improve the quality of the solution. The proposed methodology is implemented, tested, and compared with existing solutions for some ‘real’ problem instances.



Do not open for a day Close